Перевести страницу на:  
Please select your language to translate the article


You can just close the window to don't translate
Библиотека
ваш профиль

Вернуться к содержанию

Программные системы и вычислительные методы
Правильная ссылка на статью:

Бураков С.В., Залога А.Н., Панькин С.И., Семенкин Е.С., Якимов И.С. Применение самоконфигурируемого генетического алгоритма для моделирования атомной кристаллической структуры химических соединений по данным рентгеновской дифракции

Аннотация: Предметом исследования в данной работе является оценка возможности и степени эффективности применения самоконфигурирующегося генетического алгоритма глобальной оптимизации (СГА) для автоматизации задачи определения атомной кристаллической структуры новых веществ по данным порошковой рентгеновской дифракции. Предложенный вариант алгоритма СГА исследован на задаче определения известной кристаллической структуры химического соединения Ba2CrO4, в которой требовалось найти расположение 7-ми независимых атомов в элементарной кристаллической ячейке. Для анализа эффективности и определения частоты сходимости структурных моделей к истинной структуре этого вещества в процессе эволюционного поиска было сделано несколько десятков запусков СГА с различными размерами популяций структурных моделей и типами генетических операций. Суть метода самоконфигурирования состоит в том, что подбор оптимальных генетических операторов селекции, скрещивания и мутации из предложенного множества их возможных вариантов производится самим алгоритмом СГА в ходе решения задачи. Вероятности для операторов быть выбранными для генерации очередного поколения популяции структурных моделей адаптируются, исходя из успешности эволюции с помощью этих операторов на предыдущем поколении. Это приводит к автоматическому выбору наилучших операторов, обеспечивающих сходимость структурных моделей к истинной кристаллической структуре. Одной из основных проблем, препятствующих применению стохастических эволюционных генетических алгоритмов для структурного анализа, является необходимость нетривиального эмпирического подбора генетических операторов. Применение самоконфигурируемого генетического алгоритма для автоматизации выбора оптимальных генетических операторов в задаче моделирования атомной кристаллической структуры химических соединений по данным рентгеновской дифракции предложено впервые. При определении кристаллической структуры Ba2CrO4 по СГА достигнута частота сходимости к истинной структуре этого вещества 80%. Это создает возможность разработки автоматизированного эволюционного генетического алгоритма структурного анализа по рентгенодифракционным данным.


Ключевые слова:

эволюционные алгоритмы, генетические алгоритмы, самоконфигурация генетических алгоритмов, кристаллическая структура, рентгеновская порошковая дифракция, полнопрофильный анализ, определение кристаллической структуры, самоконфигурация, дифрактограмма, генетические операторы

Abstract: the article is devoted to evaluation of possibility and effectiveness of the use of self-configuring genetic algorithm of global optimization to automate the task of determining the atomic crystal structure of new substances by its powder the x-ray diffraction. The suggested version of the self-configuring genetic algorithm was studied on the problem of determining the known crystal structure of a Ba2CrO4 chemical compound, which required finding the location of 7 independent atoms in the elementary cell of the crystal. To analyze the effectiveness and determining the convergence rate of structural models to the true structure of the substance in the process of evolutionary search the authors performed several dozen launches of selfconfiguring genetic algorithm with different population sizes of structural models and types of genetic operations. The essence of the self-configuration method is in the fact that choice of optimal genetic operators of selection, crossbreeding and mutation from the suggested set of possible variants is performed by the self-configuring genetic algorithm itself while solving the problem. The probability for the operators of being selected to generate the next generation of population of structural models adapts based on the success of evolution by using these operators on the previous generation. This leads to the automatic selection of the best operators providing convergence of structural models to the true crystal structure. One of the main problems that prevent the use of stochastic evolution of genetic algorithms for structure analysis is the need for a non-trivial empirical selection of genetic operators. Applying the self-configuring genetic algorithm to automate the selection of optimal genetic operators in the task of modeling atomic crystal structure of chemical compounds by the X-ray diffraction data is suggested for the first time. In determining the crystal structure of Ba2CrO4 using self-configuring genetic algorithm the convergence rate to the true crystal structure reached 80%. This creates the possibility of developing an automated evolutionary genetic algorithm for structural analysis based on the X-ray diffraction data.


Keywords:

evolutionary algorithms, genetic algorithms, self-configuration of genetic algorithms, crystal structure, X-ray powder diffraction, full-profile analysis, determination of crystal structure, self-configuration, diffraction pattern, genetic operators


Эта статья может быть бесплатно загружена в формате PDF для чтения. Обращаем ваше внимание на необходимость соблюдения авторских прав, указания библиографической ссылки на статью при цитировании.

Скачать статью

Библиография
1. Семенкина М.Е., Семенкин Е.С. Программа для решения задач символьной регрессии самоконфигурируемым алгоритмом генетического программирования. – М.: Роспатент. 2012. № гос. рег. 2012619347.
2. Гуменникова А.В., Емельянова М.Н., Семенкин Е.С., Сопов Е.А. Об эволюционных алгоритмах решения сложных задач оптимизации // Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева. 2003. № 4. С. 14.
3. Semenkin E., Semenkina M. Stochastic Models and Optimization Algorithms for Decision Support in Spacecraft Control Systems Preliminary Design // Informatics in Control, Automation and Robotics.-Lecture Notes in Electrical Engineering, Springer-Verlag, Berlin Heidelberg. 2014. Vol. 283. P. 51-65.
4. Burakov S.V., Semenkin E.S. Solving variational and Cauchy problems with self-configuring genetic programming algorithms // International Journal of Innovative Computing and Applications. 2013. Volume 5, Issue 3. P. 152–162.
5. Semenkin E., Semenkina M. The Choice of Spacecrafts' Control Systems Effective Variants with Self-Configuring Genetic Algorithm. In: Ferrier, J.L. et al (Eds.): Informatics in Control, Automation and Robotics: Proceedings of the 9th International Conference ICINCO’2012.– Rome: Italy. 2012. Vol. 1. P. 84-93.
6. Semenkin E.S., Semenkina M.E. Self-configuring Genetic Algorithm with Modified Uniform Crossover Operator // Advances in Swarm Intelligence. Lecture Notes in Computer Science 7331. – Springer-Verlag, Berlin Heidelberg. 2012. P. 414-421.
7. Meredig B., Wolverton C. A hybrid computational–experimental approach for automated crystal structure solution // Nature Materials. 2013. No. 12, P. 123–127.
8. Zaloga A. N., Burakov S. V., Semenkin E. S., Yakimov I. S.. A Research of Convergence of Multi-Population Binary and Real Genetic Algorithms for Solution of Crystal Structure from X-Ray Powder Diffraction Data // Applied Mechanics and Materials. Proceedings of APMSIT Conference. Shanghai, China. 2014.
9. Harris K. D. M. Powder Diffraction Crystallography of Molecular Solids // Top. Curr. Chem. 2012. No. 315. P. 133–177.
10. Harris K.D.M. Fundamentals and applications of genetic algorithms for structure solution from powder X-ray diffraction data // Computational Materials Science. 2009. V. 45. Issue 1. P. 16-20.
11. Yakimov Y. I., Semenkin E. S., Yakimov I. S. Two-level genetic algorithm for a fullprofile fitting of X-ray powder patterns // Z. Kristallogr. Suppl. 2009. No. 30. P. 21-26.
12. Griffin T.A.N., Shankland K., van de Streek J., Cole J. GDASH: a grid-enabled program for structure solution from powder diffraction data // J. Appl. Cryst. 2009. No. 42. P. 356-359.
13. Favre-Nicolin V., Cerny R. FOX, “free objects for crystallography”: a modular approach to ab initio structure determination from powder diffraction // J. Appl. Cryst. 2002. No. 35. P. 734-743.
14. David W.I.F., Shankland K. Structure determination from powder diffraction data // Acta Cryst. 2008. A64. P. 52-64.
15. Cerny R., Favre-Nicolin V. Direct space methods of structure determination from powder diffraction: principles, guidelines, perspectives // Z. Kristallogr. Suppl. 2007. No. 222. 105-113.
16. Young R.A. The Rietveld Method / Oxford University Press. 1995. 298 p.
17. Якимов Я.И., Кирик С.Д., Семенкин Е.С., Соловьев Л.А., Якимов И.С. Эволюционный метод моделирования кристаллической структуры вещества по данным порошковой дифракции // Журнал Сибирского федерального университета, Химия. 2013. №6. С. 180-191.
References
1. Semenkina M.E., Semenkin E.S. Programma dlya resheniya zadach simvol'noy regressii samokonfiguriruemym algoritmom geneticheskogo programmirovaniya. – M.: Rospatent. 2012. № gos. reg. 2012619347.
2. Gumennikova A.V., Emel'yanova M.N., Semenkin E.S., Sopov E.A. Ob evolyutsionnykh algoritmakh resheniya slozhnykh zadach optimizatsii // Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva. 2003. № 4. S. 14.
3. Semenkin E., Semenkina M. Stochastic Models and Optimization Algorithms for Decision Support in Spacecraft Control Systems Preliminary Design // Informatics in Control, Automation and Robotics.-Lecture Notes in Electrical Engineering, Springer-Verlag, Berlin Heidelberg. 2014. Vol. 283. P. 51-65.
4. Burakov S.V., Semenkin E.S. Solving variational and Cauchy problems with self-configuring genetic programming algorithms // International Journal of Innovative Computing and Applications. 2013. Volume 5, Issue 3. P. 152–162.
5. Semenkin E., Semenkina M. The Choice of Spacecrafts' Control Systems Effective Variants with Self-Configuring Genetic Algorithm. In: Ferrier, J.L. et al (Eds.): Informatics in Control, Automation and Robotics: Proceedings of the 9th International Conference ICINCO’2012.– Rome: Italy. 2012. Vol. 1. P. 84-93.
6. Semenkin E.S., Semenkina M.E. Self-configuring Genetic Algorithm with Modified Uniform Crossover Operator // Advances in Swarm Intelligence. Lecture Notes in Computer Science 7331. – Springer-Verlag, Berlin Heidelberg. 2012. P. 414-421.
7. Meredig B., Wolverton C. A hybrid computational–experimental approach for automated crystal structure solution // Nature Materials. 2013. No. 12, P. 123–127.
8. Zaloga A. N., Burakov S. V., Semenkin E. S., Yakimov I. S.. A Research of Convergence of Multi-Population Binary and Real Genetic Algorithms for Solution of Crystal Structure from X-Ray Powder Diffraction Data // Applied Mechanics and Materials. Proceedings of APMSIT Conference. Shanghai, China. 2014.
9. Harris K. D. M. Powder Diffraction Crystallography of Molecular Solids // Top. Curr. Chem. 2012. No. 315. P. 133–177.
10. Harris K.D.M. Fundamentals and applications of genetic algorithms for structure solution from powder X-ray diffraction data // Computational Materials Science. 2009. V. 45. Issue 1. P. 16-20.
11. Yakimov Y. I., Semenkin E. S., Yakimov I. S. Two-level genetic algorithm for a fullprofile fitting of X-ray powder patterns // Z. Kristallogr. Suppl. 2009. No. 30. P. 21-26.
12. Griffin T.A.N., Shankland K., van de Streek J., Cole J. GDASH: a grid-enabled program for structure solution from powder diffraction data // J. Appl. Cryst. 2009. No. 42. P. 356-359.
13. Favre-Nicolin V., Cerny R. FOX, “free objects for crystallography”: a modular approach to ab initio structure determination from powder diffraction // J. Appl. Cryst. 2002. No. 35. P. 734-743.
14. David W.I.F., Shankland K. Structure determination from powder diffraction data // Acta Cryst. 2008. A64. P. 52-64.
15. Cerny R., Favre-Nicolin V. Direct space methods of structure determination from powder diffraction: principles, guidelines, perspectives // Z. Kristallogr. Suppl. 2007. No. 222. 105-113.
16. Young R.A. The Rietveld Method / Oxford University Press. 1995. 298 p.
17. Yakimov Ya.I., Kirik S.D., Semenkin E.S., Solov'ev L.A., Yakimov I.S. Evolyutsionnyy metod modelirovaniya kristallicheskoy struktury veshchestva po dannym poroshkovoy difraktsii // Zhurnal Sibirskogo federal'nogo universiteta, Khimiya. 2013. №6. S. 180-191.