Перевести страницу на:  
Please select your language to translate the article


You can just close the window to don't translate
Библиотека
ваш профиль

Вернуться к содержанию

Теоретическая и прикладная экономика
Правильная ссылка на статью:

Факторный анализ инновационной активности организаций в РФ

Леденёва Марина Викторовна

доктор экономических наук

профессор, кафедра менеджмента и коммерции, Волгоградский филиал Российского экономического университета им. Г.В. Плеханова

400131, Россия, Волгоградская область, г. Волгоград, ул. Волгодонская, 11

Ledeneva Marina Viktorovna

Doctor of Economics

Professor, the Department of Management and Commerce, Volgograd Branch of Plekhanov Russian University of Economics

400131, Russia, Volgogradskaya oblast', g. Volgograd, ul. Volgodonskaya, 11

mledenjova@yandex.ru
Другие публикации этого автора
 

 
Мишура Наталья Амировна

кандидат экономических наук

доцент, кафедра экономики и управления, Волжский филиал Волгоградского государственного университета

404133, Россия, Волгоградская область, г. Волжский, ул. 40 Лет Победы, 11

Mishura Natalia Amirovna

PhD in Economics

Docent, the department of Economics and Management, Volzhsky Branch of Volgograd State University

404133, Russia, Volgogradskaya oblast', g. Volzhskii, ul. 40 Let Pobedy, 11

mis-nata-volga@yandex.ru

DOI:

10.25136/2409-8647.2020.4.34785

Дата направления статьи в редакцию:

24-12-2020


Дата публикации:

31-12-2020


Аннотация: Целью исследования является выявление и интерпретация факторов, влияющих на значения показателей инновационной активности предприятий в РФ. Задачи: провести факторный анализ инновационной активности организаций в РФ методом главных компонент и максимального правдоподобия, выявить и интерпретировать факторы; сравнить полученные результаты; разработать рекомендации по совершенствованию состава статистических показателей, используемых для оценки результативности инновационной активности организаций на мезо- и макроуровнях. Эмпирической базой исследования выступили данные Росстата по 10 показателям за 2009–2016 гг (657 наблюдений). Факторный анализ был проведен двумя методами: главных компонент и главных факторов (использован метод максимального правдоподобия). Научная новизна исследования заключается в выявлении латентных обобщающих характеристик и взаимосвязей между показателями, используемыми для оценки инновационной активности организаций в РФ. Оба метода, главных компонент и главных факторов, позволили похожим образом выделить два фактора: по методу главных компонент: развитие науки в регионе и – специализация региона на наукоемких отраслях; по методу главных факторов: научно-исследовательские организации в регионе, их число и показатели; специализация региона на наукоемких отраслях. Второй фактор отражает коммерциализацию НИР. Для оценки коммерциализации НИР используется относительно небольшое количество индикаторов. Можно отметить недостаток статистических данных для оценки результативности инновационной активности организаций. В число статистических показателей инновационной активности организаций должны быть включены показатели экономического эффекта. Это позволит оперировать показателями результативности НИОКР не только на микро-, но и на мезо- и макроуровне при разработке и оценке стимулирующих мер инновационной активности бизнеса на государственном уровне.


Ключевые слова:

инновационная активность организаций, инновационная деятельность, статистика инноваций, факторный анализ, метод главных компонент, метод главных факторов, экономический эффект, факторы инновационной активности, субъекты РФ, показатели инновационной активности

Abstract: This research is aimed at determination and interpretation of the factors that influence the indicator values of innovation activity of enterprises in the Russian Federation. The author sets the following goals: carry out factor analysis of innovation activity of companies in the Russian Federation using the method of principal components and maximum likelihood; determine and interpret the factors; compare the acquired results; develop recommendations on improvement the composition of statistical indicators used for efficiency assessment of innovation activity of companies on meso- and macro levels. The empirical basis contains the data provided by Rosstat on 10 indicators for the period from 2009 to 2016 (657 observations). The scientific novelty consists in identification of latent generalizing characteristics and correlations between the indicators used for assessing the innovation activity of companies in the Russian Federation. Both methods, of principal components and principal factors, allowed similarly distinguishing the two factors: via the method of principal components: development of science in the region and specialization of the region in high-tech industries; via the method of principal factors: research organizations in the region, their number and indicators; specialization of the region in high-tech industries. The second factor reflects commercialization of research and development. A relatively small number of indicators is used for assessing commercialization of research and development. The author notes the lack of statistical data for assessing the efficiency of innovation activity of companies. The statistical indicators of innovation activity of enterprises should include the economic effect indicators. This would allow using the performance indicators of research and development not only on micro-, but also meso - and macro-levels in elaboration and assessment of measures stimulating innovation activity of businesses at the country level.


Keywords:

innovative activity of organizations, innovative activity, statistics of innovations, factor analysis, principal components method, principal factor method, economic effect, factors of innovative activity, constituent entities of the Russian Federation, indicators of innovative activity

В условиях становления информационной экономики как этапа современной стадии развития цивилизации инновации считаются ключом к поддержанию конкурентоспособности на мировом рынке, созданию рабочих мест и улучшению качества жизни населения. Поэтому повышение инновационной активности организаций – актуальная задача как на высшем государственном, так и на региональном уровне, решение которой должно обеспечить положительное воздействие на экономический рост. Важной задачей органов государственной власти выступает систематическая оценка и стимулирование инновационной активности организаций, прежде всего, субъектов малого и среднего бизнеса.

В современной литературе достаточно широко освещены вопросы инновационных процессов в экономики. При этом менее разработанной является проблема создания системы оценки инновационной активности на микроуровне, определения количественных индикаторов эффективности внедрения инноваций. Публикации, затрагивающие оценку эффективности инноваций на микроуровне, посвящены главным образом изучению темы с точки зрения организации, ее менеджмента и лишь небольшая их часть в качестве проблемы исследования обозначают оценку инновационных процессов органами государственной власти. Среди трудов, посвященных исследованию инновационных процессов на микроуровне следует отметить работы И.Т. Балабанова, А.И. Балашова, Е.М. Роговой, Е.А. Ткаченко, А.А. Трефиловой, Р.А. Фатхутдинова и др.

Информационно-эмпирическую базу исследования составляют данные Росстата.

Научная новизна исследования заключается в выявлении латентных обобщающих характеристик и взаимосвязей между показателями, используемыми для оценки инновационной активности организаций в РФ.

Целью исследования является выявление и интерпретация факторов, влияющих на значения показателей инновационной активности предприятий в РФ.

Задачи: провести факторный анализ инновационной активности организаций в РФ методом главных компонент и главных факторов (метод максимального правдоподобия), выявить и интерпретировать факторы; сравнить полученные результаты.

Методология. В работе на основе системного подхода применялись методы многомерного статистического анализа: главных компонент и главных факторов, графического представления данных. Обработка данных проводилась в программе Statistica.

Теоретическая и практическая значимость исследования состоит в том, что полученные результаты могут быть использованы для совершенствования набора показателей, оценивающих инновационную активность организаций в РФ.

Инновационная деятельность в общем виде представляет собой вид деятельности, связанный с трансформацией идей в новый или усовершенствованный продукт, внедренный на рынке, в новый или усовершенствованный технологический процесс, использованный в практической деятельности, либо в новый подход к социальным услугам.

В российской статистике выделяются такие виды инновационной деятельности, как исследования и разработки; дизайн; приобретение машин и оборудования, патентов, лицензий на использование изобретения, промышленных образцов, полезных моделей, ноу-хау, программных продуктов, связанных с осуществлением технологических инноваций; инжиниринг; обучение, подготовка и переподготовка персонала; маркетинговые исследования [1, c. 371]. Инновационная активность организации является сложным и многокомпонентным понятием, что усложняет задачу ее оценки.

Уровень инновационной активности организаций оценивается в статистике инноваций. Статистика инноваций – это раздел социально-экономической статистики, изучающий количественные параметры явлений и процессов в сфере науки и инноваций. Статистика инноваций, основанная на единых международных подходах, появляется с 1989 г., в РФ – с 1994 г. С 1994 г. в России ведутся ежегодные обследования инноваций крупных и средних промышленных предприятий, с 1996 г. – предприятий сферы услуг, с 1998 г. – малых предприятий (см. рис. 1).

В российской статистике двумя основными показателями инновационной активности организаций являются:

- совокупный уровень инновационной активности (отношение числа организаций, осуществляющих одновременно инновации всех типов: организационные, маркетинговые, технологические) либо инновации отдельных типов (сочетаний), к общему числу обследованных за определенный период времени организаций;

- затраты на маркетинговые, организационные и технологические инновации.

Данные показатели рассчитываются по формам собственности, по величине организаций и по видам экономической деятельности. Аналогичные показатели рассчитываются и по отдельным видам инноваций: удельный вес организаций, осуществлявших инновации отдельных типов, в общем числе организаций; затраты на технологические инновации (включая продуктовые и процессные), маркетинговые и организационные инновации по типам инноваций.

Рисунок 1 – Развитие статистики инноваций в России [2]

Рассматриваемая выборка – данные, характеризующие инновационную активность субъектов РФ за 2009–2016 гг (657 наблюдений) [3]. Данные за 2017–18 гг. отсутствуют, т.к. за эти годы пока нет статистических данных по показателю «Удельный вес организаций, осуществлявших технологические, организационные, маркетинговые инновации, в общем числе обследованных организаций». Этот показатель будет опубликован в электронной версии Приложения к сборнику «Регионы России. Социально-экономические показатели.2020».в соответствии с актуализированной Методикой расчета начиная с 2017 года.

Данных по Республике Крым и городу федерального значения Севастополю нет за 2009–13 гг., когда данные регионы не входили в состав РФ. Также из выборки были удалены наборы данных, по которым нет данных по какому-либо из показателей или они не публикуются (как, например, с 2013 г. по Чукотскому автономному округу и Еврейской автономной области отдельные данные не публикуются в целях обеспечения конфиденциальности первичных статистических данных, полученных от организаций в соответствии с Федеральным законом от 29.11.07 №282-ФЗ «Об официальном статистическом учете и системе государственной статистики в Российской Федерации» (п.5 ст.4, ч.1 ст.9)).

На первом этапе факторного анализа нами была построена корреляционная матрица (табл. 1). В этой корреляционной матрице используются переменные, соответствующие основным показателям инновационной активности организаций в РФ:

Var 1 – организации, выполнявшие НИР, ед.

Var 2 – объем инновационных товаров, работ, услуг, в % от общего объема отгруженных товаров, выполненных работ, услуг

Var 3 – объем инновационных товаров, работ, услуг, млн. руб.

Var 4 – численность персонала, занятого НИР, чел.

Var 5 – внутренние затраты на научные исследования и разработки, млн. руб.

Var 6 – используемые передовые производственные технологии, ед.

Var 7 – выдано патентов на изобретения, ед.

Var 8 – выдано патентов на полезные модели, ед.

Var 9 – затраты на технологические инновации, млн. руб.

Var 10 – удельный вес организаций, осуществляющих технологические, организационные, маркетинговые инновации, в общем числе обследованных организаций, %.

Как видно из табл. 1, по всем признакам хотя бы один коэффициент корреляции выше 0,3, что говорит о возможности объединения нескольких переменных в один фактор. В рассматриваемой корреляционной матрице выделяется блок, содержащий очень большие значения (>0,9). В него входят корреляции между следующими переменными: «организации, выполнявшие НИР, ед.», «численность персонала, занятого НИР», «внутренние затраты на научные исследования и разработки, млн. руб.», «выдано патентов на изобретения, ед.», «выдано патентов на полезные модели, ед.». Наименьшая корреляция с другими признаками наблюдается у фактора «Удельный вес организаций, осуществляющих технологические, организационные, маркетинговые инновации, в общем числе обследованных организаций, %», он лишь слабо коррелирует с признаком «используемые передовые производственные технологии, ед.».

Таблица 1 – Корреляционная матрица

Корреляции

Отмеченные корреляции значимы при p < ,05000.

N = 657 (удаление отсутствующих данных по регистру)

Var1

Var2

Var3

Var4

Var5

Var6

Var7

Var8

Var9

Var10

Var1

1,00

0,16

0,70

0,98

0,96

0,75

0,94

0,96

0,74

0,28

Var2

0,16

1,00

0,56

0,15

0,17

0,28

0,11

0,17

0,28

0,18

Var3

0,70

0,56

1,00

0,69

0,77

0,65

0,64

0,68

0,84

0,26

Var4

0,98

0,15

0,69

1,00

0,97

0,75

0,95

0,96

0,74

0,26

Var5

0,96

0,17

0,77

0,97

1,00

0,73

0,93

0,92

0,81

0,26

Var6

0,75

0,28

0,65

0,75

0,73

1,00

0,65

0,73

0,70

0,31

Var8

0,94

0,11

0,64

0,95

0,93

0,65

1,00

0,95

0,70

0,24

Var9

0,96

0,17

0,68

0,96

0,92

0,73

0,95

1,00

0,72

0,29

Var10

0,74

0,28

0,84

0,74

0,81

0,70

0,70

0,72

1,00

0,24

Основное различие двух используемых моделей факторного анализа состоит в том, что в анализе главных компонент предполагается, что должна быть использована вся изменчивость переменных, тогда как в анализе главных факторов используется только изменчивость переменной, общая и для других переменных.

Проведем процедуру факторного анализа методом главных компонент. Матрица «Собственные значения» (табл. 2) показывает объясненную дисперсию и накопленную дисперсию. На первый фактор приходится 6,84 ед. информации, что составляет 68,4% общей информации, т.е. от 10 факторов. На второй фактор приходится 1,24 ед. информации или 12,46% общей информации. Накопленная дисперсия показывает, что на первые два фактора приходится 80,87% всей информации.

Факторный анализ является методом сокращения или редукции данных, т.е. методом сокращения числа переменных. Возникает вопрос: сколько факторов следует выделять? Метод Кайзера предписывает оставить первые два фактора, т.к. они содержат больше единицы информации и у них дисперсия больше единицы.

Таблица 2 – Объясненная полная дисперсия (метод главных компонент)

Выделение: главные компоненты

Собственные значения

% общей дисперсии

Кумулятивные собственные значения

Накопленная дисперсия, в %

1

6,840905

68,40905

6,84090

68,4090

2

1,246285

12,46285

8,08719

80,8719

3

0,875505

8,75505

8,96269

89,6269

4

0,423135

4,23135

9,38583

93,8583

5

0,361516

3,61516

9,74735

97,4735

6

0,105195

1,05195

9,85254

98,5254

7

0,065141

0,65141

9,91768

99,1768

8

0,050070

0,50070

9,96775

99,6775

9

0,025949

0,25949

9,99370

99,9370

10

0,006300

0,06300

10,00000

100,0000

Критерий каменистой осыпи является графическим методом, впервые предложенным Р.Кэттеллом. В соответствии с графиком «каменистой осыпи», номер той точки, в которой смыкаются «обрыв» и «пляж», дает нам искомое число факторов – 2 (рис. 2).

Рисунок 2 – График собственных значений согласно методу главных компонент (ось абсцисс – номера факторов, ось ординат – собственные значения)

Из матрицы факторных нагрузок (табл. 3) видно, что первый фактор содержит практически все признаки, кроме удельного веса организаций, осуществляющих технологические, организационные, маркетинговые инновации, в общем числе обследованных организаций, % и объема инновационных товаров, работ, услуг, в % от общего объема отгруженных товаров, выполненных работ, услуг. Можно сказать, что он характеризует развитие науки в регионе. Второй фактор отражает специализацию региона на наукоемких отраслях и характеризуется признаком «объем инновационных товаров, работ, услуг, в % от общего объема отгруженных товаров, выполненных работ, услуг».

Далее проведем факторный анализ методом главных факторов (максимального правдоподобия). Количество факторов установим равным двум, как было решено в результате применения метода главных компонент. Посредством двух факторов объяснено 75,97% полной информации, что меньше, чем по методу главных компонент (табл. 3). На второй фактор приходится только 0,9 ед. информации (рис. 3).

Таблица 3 – Объясненная полная дисперсия (метод максимального правдоподобия)

Выделение: метод максимального правдоподобия

Собственные значения

% общей дисперсии

Кумулятивные собственные значения

Накопленная дисперсия, в %

1

6,696251

66,96251

6,696251

66,96251

2

0,900937

9,00937

7,597187

75,97187

Рисунок 3 – График собственных значений согласно методу максимального правдоподобия (ось абсцисс – номера факторов, ось ординат – собственные значения)

Доля дисперсии отдельной переменной, принадлежащая общим факторам и разделяемая с другими переменными называется общностью. Поэтому дополнительной работой, стоящей перед исследователем при применении этой модели, является оценка общностей для каждой переменной, т.е. доли дисперсии, которая является общей для всех пунктов. Доля дисперсии, за которую отвечает каждый пункт, равна тогда суммарной дисперсии, соответствующей всем переменным, минус общность. Числа в табл. «Общности» (табл. 4) измеряют, насколько хорошо факторы описывают изменчивость исходных переменных. Например, информация, содержащаяся в переменной «Организации, выполнявшие НИР, ед.», описана фактором 1 на 91,02%, а фактором 2 на 96,8%. Переменная «удельный вес организаций, осуществляющих технологические, организационные, маркетинговые инновации, в общем числе обследованных организаций, %» практически не объяснена ни одним из двух факторов. Также довольно слабо объяснена переменная «объем инновационных товаров, работ, услуг, в % от общего объема отгруженных товаров, выполненных работ, услуг».

Таблица 4 – Общности

Фактор 1

Фактор 2

Коэффициент множественной детерминации

Var1

0,942226

0,968456

0,970901

Var2

0,072685

0,417523

0,571636

Var3

0,661276

0,981641

0,888243

Var4

0,940386

0,980401

0,990438

Var5

0,961531

0,966135

0,981441

Var6

0,599137

0,600103

0,697887

Var7

0,866420

0,910493

0,929633

Var8

0,902855

0,931260

0,953059

Var9

0,671949

0,759197

0,808942

Var10

0,077786

0,081977

0,134967

Таблица факторных нагрузок позволяет интерпретировать факторы. Элементы этой таблицы называются факторными нагрузками и являются корреляциями между факторами и исходными переменными.

Таблица 5 – Таблица факторных нагрузок

Факторные нагрузки (Varimax raw)

Фактор 1

Фактор 2

Var1

0,954079

0,241225

Var2

0,011263

0,646062

Var3

0,517668

0,844785

Var4

0,968493

0,205966

Var5

0,925374

0,331387

Var6

0,696493

0,339118

Var7

0,936819

0,181281

Var8

0,937947

0,226972

Var9

0,632268

0,599529

Var10

0,229472

0,171229

Общая дисперсия

5,667567

1,929620

Доля общей дисперсии

0,566757

0,192962

С помощью факторного анализа методом максимального правдоподобия10 переменных были сведены к двум факторам. Первый фактор характеризуется признаками «организации, выполнявшие НИР, ед.», «численность персонала, занятого НИР, чел.», «внутренние затраты на научные исследования и разработки, млн. руб.», «выдано патентов на изобретения, ед.», «выдано патентов на полезные модели, ед.». По сути, он характеризует число и показатели научно-исследовательских организаций (вузов, НИИ) в субъекте РФ. Чем больше в регионе число научно-исследовательских организаций, тем выше будут и численность персонала, занятого НИР, и внутренние затраты на научные исследования и разработки, и количество выданных патентов и изобретений на полезные модели как результатов деятельности данных организаций.

Второй фактор характеризуется в основном одной переменной – объем инновационных товаров, работ, услуг, млн. руб. Это, по сути, специализация региона на производстве инновационных товаров и услуг (на наукоемких отраслях, например, фармацевтике, машиностроении, информационных технологиях и т.д.). У регионов, которые специализируются, например, на добыче сырья, сельском хозяйстве и прочих отраслях, не являющихся инновационными, показатель объема инновационных товаров, работ, услуг будет иметь небольшие значения, несмотря на наличие вузов и НИИ, которые будут осуществлять и финансировать научные исследования, получать патенты и т.п. Таким, образом, этот фактор отражает коммерциализацию НИР.

Метод главных компонент дает похожую интерпретацию двух выделенных факторов. Но первый фактор по этому методу содержит большее число признаков.

Таким образом, оба метода позволили похожим образом выделить два фактора. По методу главных компонент первый фактор – развитие науки в регионе, второй фактор – специализация региона на наукоемких отраслях; по методу максимального правдоподобия: первый фактор – научно-исследовательские организации в регионе, их число и показатели (немного более узко, чем по методу главных компонент), второй фактор – специализация региона на наукоемких отраслях (коммерциализация НИР).

Как следует из анализа официальных статистических данных, для оценки коммерциализации НИР используется относительно небольшое количество индикаторов, в сравнении с намного большим числом показателей, характеризующих результаты деятельности научно-исследовательских организаций. Можно отметить недостаток статистических данных для оценки результативности инновационной активности организаций.

В настоящее время разработан ряд методик оценки инновационной активности организаций (например, методики В.П. Баранчеева, Н.П. Масленникова и В.М. Мишина [4, с. 55–61], А.Ю. Реутова [5], А.А. Трифиловой [6, с. 51–53], Р.А. Фатхутдинова [7, с. 264–265], и др.). Однако многие признаки инновационной активности, предлагаемые учеными-экономистами, являются трудно оценимыми на практике, например, оценимыми только с помощью методов экспертной оценки и несопоставимыми по различным предприятиям. При этом разработанные методики, как правило, используют показатели, представляющие коммерческую тайну, не собираемые и не публикуемые в агрегированном виде Росстатом, что позволяет использовать их только для целей отдельного предприятия, но не на макро- или мезоуровне.

Соответственно, в число статистических показателей инновационной активности организаций должны быть включены показатели экономического эффекта. В целях статистического учета показатели экономического эффекта и эффективности должны быть рассчитаны предприятиями по единой достаточно простой и понятной методике, например, эффект как прирост прибыли от внедрения инновации, а эффективность – как отношение прироста прибыли к затратам на НИОКР. Соответственно, в статистических сборниках будут опубликованы данные о суммарном экономическом эффекте предприятий страны или ее отдельных регионов или усредненные взвешенные по величине затрат на НИОКР данные показателей экономической эффективности инноваций. Это позволит оперировать показателями результативности НИОКР не только на микро-, но и на мезо- и макроуровне при разработке и оценке стимулирующих мер инновационной активности бизнеса на государственном уровне.

Библиография
1. Индикаторы инновационной деятельности: 2019 : статистический сборник / Л. М. Гохберг, К. А. Дитковский, И. А. Кузнецова и др.; Нац. исслед. ун-т «Высшая школа экономики». – М.: НИУ ВШЭ, 2019. – 376 с.
2. Статистика инноваций в России / Росстат. – URL: https://www.gks.ru/free_doc/new_site/business/nauka/ind_2020/pril3.pdf
3. Социально-экономические показатели по субъектам Российской Федерации / Росстат. – URL: https://rosstat.gov.ru/folder/210/document/47652
4. Баранчеев, В. П. Управление инновациями // В.П. Баранчеев, Н.П. Масленникова, В.М. Мишин. – М.: Издательство Юрайт, 2011. – 711 с.
5. Реутов, А. Ю. Разработка методики комплексной оценки инновационной активности организации / А.Ю. Реутов // Управление экономическими системами: электронный научный журнал. –2011. – № 10. URL: https://cyberleninka.ru/article/v/razrabotka-metodiki-kompleksnoy-otsenki-innovatsionnoy-aktivnosti-organizatsii
6. Трифилова, А. А. Управление инновационным развитием предприятия / А.А. Трифилова. – М.: Финансы и статистика, 2003. – 173 с.
7. Фатхутдинов, Р.А. Инновационный менеджмент / Р.А. Фатхутдинов. –СПб.: Питер, 2011. 448 с.
References
1. Indikatory innovatsionnoi deyatel'nosti: 2019 : statisticheskii sbornik / L. M. Gokhberg, K. A. Ditkovskii, I. A. Kuznetsova i dr.; Nats. issled. un-t «Vysshaya shkola ekonomiki». – M.: NIU VShE, 2019. – 376 s.
2. Statistika innovatsii v Rossii / Rosstat. – URL: https://www.gks.ru/free_doc/new_site/business/nauka/ind_2020/pril3.pdf
3. Sotsial'no-ekonomicheskie pokazateli po sub''ektam Rossiiskoi Federatsii / Rosstat. – URL: https://rosstat.gov.ru/folder/210/document/47652
4. Barancheev, V. P. Upravlenie innovatsiyami // V.P. Barancheev, N.P. Maslennikova, V.M. Mishin. – M.: Izdatel'stvo Yurait, 2011. – 711 s.
5. Reutov, A. Yu. Razrabotka metodiki kompleksnoi otsenki innovatsionnoi aktivnosti organizatsii / A.Yu. Reutov // Upravlenie ekonomicheskimi sistemami: elektronnyi nauchnyi zhurnal. –2011. – № 10. URL: https://cyberleninka.ru/article/v/razrabotka-metodiki-kompleksnoy-otsenki-innovatsionnoy-aktivnosti-organizatsii
6. Trifilova, A. A. Upravlenie innovatsionnym razvitiem predpriyatiya / A.A. Trifilova. – M.: Finansy i statistika, 2003. – 173 s.
7. Fatkhutdinov, R.A. Innovatsionnyi menedzhment / R.A. Fatkhutdinov. –SPb.: Piter, 2011. 448 s.

Результаты процедуры рецензирования статьи

В связи с политикой двойного слепого рецензирования личность рецензента не раскрывается.
Со списком рецензентов издательства можно ознакомиться здесь.

Представленная на рецензирование статья посвящена вопросам изучения влияния факторов на инновационную активность организаций в Российской Федерации.
Методология исследования базируется на применении методов корреляционного анализа данных об основных показателях инновационной активности организаций, построении корреляционной матрицы, использовании метода главных компонент, построении графика «каменистой осыпи» для определения искомого числа факторов для включения их в математическую модель, оценке общностей (доли дисперсии, которая является общей для всех пунктов), определении факторных нагрузок, обработке данных в программе Statistica.
Научная новизна представленного исследования четко сформулирована в статье – она заключается в выявлении латентных обобщающих характеристик и взаимосвязей между показателями, используемыми для оценки инновационной активности организаций в РФ.
Авторы рецензируемой статьи исходят из того, что повышение инновационной активности организаций является актуальной задачей как на государственном, так и на региональном уровне, решение которой должно обеспечить стимулирование экономического роста. В работе рассмотрено понятие инновационной деятельности, особенности её отражения в российской статистике при помощи двух основных показателей: совокупный уровень инновационной активности и затраты на инновации, прослежено развитие статистики инноваций в России с 1994 г. Далее подробно описаны исходные данные для проведения анализа, проанализированы коэффициенты парной корреляции, объясненная и накопленная дисперсия, построен график собственных значений согласно методу главных компонент и методу максимального правдоподобия, построена таблица факторных нагрузок и интерпретированы изучаемые факторы. Авторы приходят к выводу о том, что в число статистических показателей инновационной активности организаций должны быть включены показатели экономического эффекта и эффективности, что позволит оперировать показателями результативности НИОКР на мезо- и макроуровне при разработке и оценке стимулирующих мер инновационной активности бизнеса на государственном уровне. Библиография статьи включает 7 источников, среди которых объёмные учебные и научные книги, научные статьи в периодических журналах, а также сборники с официальными статистическими данными. На каждый из приведенных в списке литературы источников в тексте имеется адресная ссылка, что свидетельствует о наличии в публикации апелляции к оппонентам. В целом содержание и стиль изложения материала соответствует сложившейся при оформлении результатов научных исследований практике публикаций.
К достоинствам представленных материалом можно отнести наличие четко сформулированных элементов исследования: цели и задач, ёмкой характеристики методологии исследования, его теоретической и практической значимости.
В тоже время следует отметить недоработки авторов: статью необходимо структурировать надлежащим образом – с выделением общепринятых в современных научных публикациях озаглавленных разделов: введение, материалы и методы исследования, полученные результаты и их обсуждение, выводы и предложения (или заключение).
Рецензируемое исследование выполнено на актуальную тему, соответствует тематике журнала, содержит элементы приращения научного знания, имеет практическое значение для совершенствования проведения факторного анализа инновационной активности организаций в нашей стране – все это свидетельствует о возможности опубликования рецензируемой статьи.